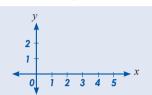
Contents

Mathematical Terms	1–68
Additional Information	70–130
Addition Table	70
Multiplication Table	71
Basic Properties of the Operations	72
Decimal System of Numeration	73
Roman Numeration System and Mayan Numeration Sys	tem74
Figurate Numbers	75–77
Factors	77
Factors and Rectangular Numbers	78–79
Prime and Composite Numbers to 200	80
Rules for Divisibility	
Rational Number Equivalents	82
The Real Number System	83
Exponents/Rules of Exponents	84–85
Mathematics of Finance	86–87
Data Representation	88–97
Angles	98
Polygons	99
Triangles	100–103
Quadrilaterals	104–105
Circles	
Three-dimensional Shapes	109–112
Faces, Edges and Vertices of Polyhedra	112
Symmetry	113
Transformations	
Cross-sections and Conic Sections	116–117
The Metric System and the International System (SI)	118–120
Time Units/Additional Units	121–123
Customary (English) System of Measurement	124
Metric/Customary (English) Conversion Table	125
Rules for Finding Area	126
Rules for Finding Surface Area	127
Rules for Finding the Volume of Prisms	
Rules for Finding the Volume of Pyramids and Spheres	129
Common Math Symbols	130



Average

A single number used to describe what is typical of a set of data. The (arithmetic) mean, median and mode are examples of averages.

Axis (axes)

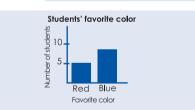
A linear direction, usually vertical or horizontal.

A bar or column graph and the coordinate plane each have both vertical and horizontal axes.

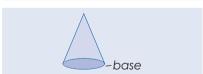
Axis of symmetry

See Line of symmetry.

B


Balance

- 1. Equipment using a pivoted beam to compare the masses of objects, or to weigh objects.
- 2. The amount of money in an account.


Bar graph

A graph in which the lengths of the bars are used to represent and compare data.

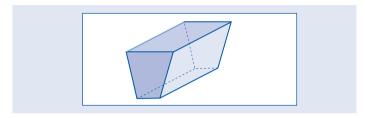
Base (of a cone)

The circular face.

Base (of a place value number system)

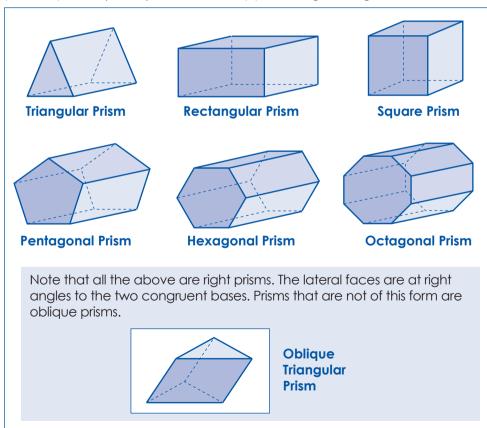
In a place value numeration system, the grouping that is used. The decimal numeration system is a base 10 numeration system.

Base (of a power)

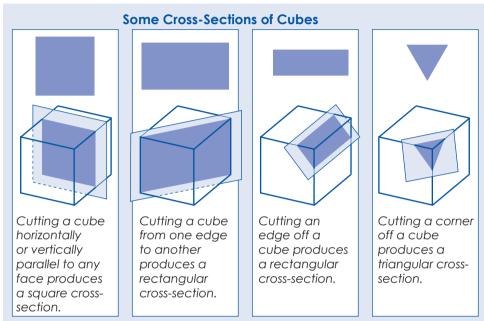

The repeated factor in a power.

In the power 4^3 , 4 is the base. In the power $(x + 2)^5$, x + 2 is the base.

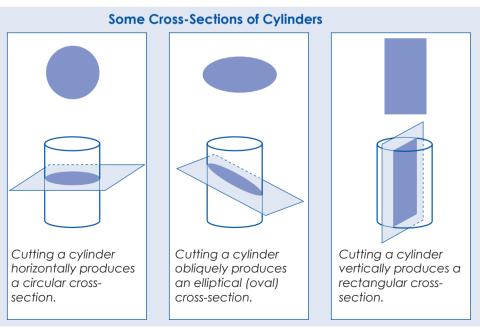
Polyhedra


Polyhedra are three-dimensional (3-D) shapes formed by polygonal regions (faces). The single term is polyhedron.

The polyhedron shown here is a hexahedron; i.e. it has six faces.


Prisms

Three-dimensional shapes formed by two congruent polygonal regions in parallel planes (bases), connected by parallelogram regions.



Cross-Sections and Conic Sections

Cross-sections refer to the plane regions resulting from planar cuts through 3-D objects.

There are many other resulting cross sections of a cube, such as trapezoids and hexagons.

